Senin, 22 April 2013

RAID


Pengertian RAID

RAID adalah kependekan dari Redundant Array of Independent Drive/Disk. Ada juga yang menyebutnya sebagai kependekan dari Redundant Array of Inexpensive Drive/Disk. Secara sedehana, RAID bisa diartikan sebagai cara menyimpan data pada beberapa harddisk. Dengan begini, kinerja PC bisa meningkat. Selain itu, salinan data juga bisa dijadikan back-up.
Implementasi RAID membutuhkan minimal 2 harddisk. Ketika RAID digunakan, sistem operasi akan membaca kedua harddisk sebagai 1 harddisk. Jadi, meskipun ada 2 harddisk, drive yang tampak pada Windows Explorer hanya 1. C saja, misalnya. Sebagai perbandingan, kalau RAID tidak digunakan, drive pada Windows Explorer muncul C dan D. Setiap drive untuk 1 harddisk.
RAID menggunakan teknik stripping, yang membuat partisi pada ruang dengan ukuran mulai dari 512 byte hingga ke beberapa megabyte. Tiap partisi itu mengandung pecahan data yang akan dibaca bersamaan untuk mempercepat pembacaan data.
RAID memiliki beberapa level, RAID0 sampai RAID7 plus RAID 10 dan beberapa RAID kombinasi. Setiap level RAID memiliki fungsi yang berbeda. Penjelasannya ada di tabel level RAID.
Selain RAID yang ada di tabel, RAID punya beberapa level lagi. Misalnya Level 10 yang artinya kombinasi antara RAID0 dan RAID1. Ada juga RAID 50 yang merupakan kombinasi antara RAID5 dan RAID0. Kombinasi ini mengawinkan fungsi antara kedua RAID.
RAID dapat dibagi lagi dalam 2 yaitu Hardware RAID dan software RAID, Untuk fitur Hardware RAID, motherboard server anda harus mendukung PCI64bit (socketnya lebih panjang 2x dari PCI biasa, bukan PCI-X ya) dan tentunya RAID Card dan harddisk. Unntuk Software RAID secara standard didukung oleh OS seperti Windows2000 server, Windows2003Server, Windows2008server dan linux.
Raid Levels
RAID 0
Juga dikenal dengan modus stripping. Membutuhkan minimal 2 harddisk. Sistemnya adalah menggabungkan kapasitas dari beberapa harddisk. Sehingga secara logikal hanya “terlihat” sebuah harddisk dengan kapasitas yang besar (jumlah kapasitas keseluruhan harddisk).Pada awalnya, RAID 0, digunakan untuk membentuk sebuah partisi yang sangat besar dari beberapa harddisk dengan biaya yang efisien.
Misalnya:
Kita membutuhkan suatu partisi dengan ukuran 500GB. Harga sebuah harddisk berukuran 100GB adalah Rp.500.000,- sedangkan harga harddisk berukuran 500GB adalah Rp.5.000.000,-. Nah, kita dapat membetuk suatu partisi berukuran 500GB dari 5 unit harddisk berukuran 100GB dengan menggunakan RAID 0. Tentunya skenario ini lebih murah karena memakan biaya lebih murah: 5 x Rp.500.000,- = Rp.2.500.000,-. Lebih murah daripada harus membeli harddisk yang berukuran 500GB. Itulah kenapa pada awalnya disebut redundant array of inexpensive disk.
Contoh lain:
Pada saat ini ukuran harddisk terbesar yang tersedia di pasaran adalah 500GB, sedangkan kita membutuhkan suatu partisi dengan ukuran 2TB. Nah, kita dapat membeli 4 unit harddisk berkapasitas 500GB dan mengkonfigurasinya dengan RAID 0, sehingga kita dapat memiliki suatu partisi berkururan 2TB tanpa harus menunggu harddisk dengan kapasitas sebesar itu tersedia di pasar.
Data yang ditulis pada harddisk-harddisk tersebut terbagi-bagi menjadi fragmen-fragmen. Dimana fragmen-fragmen tersebut disebar di seluruh harddisk. Sehingga, jika salah satu harddisk mengalami kerusakan fisik, maka data tidak dapat dibaca sama sekali.
Namun ada keuntungan dengan adanya fragmen-fragmen ini: kecepatan. Data bisa diakses lebih cepat dengan RAID 0, karena saat komputer membaca sebuah fragmen di satu harddisk, komputer juga dapat membaca fragmen lain di harddisk lainnya.
RAID 1
Biasa disebut dengan modus mirroring. Membutuhkan minimal 2 harddisk. Sistemnya adalah menyalin isi sebuah harddisk ke harddisk lain dengan tujuan: jika salah satu harddisk rusak secara fisik, maka data tetap dapat diakses dari harddisk lainnya.
Contoh:
Sebuah server memiliki 2 unit harddisk yang berkapasitas masing-masing 80GB dan dikonfigurasi RAID 1. Setelah beberapa tahun, salah satu harddisknya mengalami kerusakan fisik. Namun data pada harddisk lainnya masih dapat dibaca, sehingga data masih dapat diselamatkan selama bukan semua harddisk yang mengalami kerusakan fisik secara bersamaan.
RAID 2
RAID 2, juga menggunakan sistem stripping. Namun ditambahkan tiga harddisk lagi untuk pariti hamming, sehingga data menjadi lebih reliable. Karena itu, jumlah harddisk yang dibutuhkan adalah minimal 5 (n+3, n > 1). Ketiga harddisk terakhir digunakan untuk menyimpan hamming code dari hasil perhitungan tiap bit-bit yang ada di harddisk lainnya.
Contoh:
Kita memiliki 5 harddisk (sebut saja harddisk A,B,C, D, dan E) dengan ukuran yang sama, masing-masing 40GB. Jika kita mengkonfigurasi keempat harddisk tersebut dengan RAID 2, maka kapasitas yang didapat adalah: 2 x 40GB = 80GB (dari harddisk A dan B). Sedangkan harddisk C, D, dan E tidak digunakan untuk penyimpanan data, melainkan hanya untuk menyimpan informasi pariti hamming dari dua harddisk lainnya: A, dan B. Ketika terjadi kerusakan fisik pada salah satu harddisk utama (A atau B), maka data tetap dapat dibaca dengan memperhitungkan pariti kode hamming yang ada di harddisk C, D, dan E.
RAID 3
RAID 3, juga menggunakan sistem stripping. Juga menggunakan harddisk tambahan untuk reliability, namun hanya ditambahkan sebuah harddisk lagi untuk parity.. Karena itu, jumlah harddisk yang dibutuhkan adalah minimal 3 (n+1 ; n > 1). Harddisk terakhir digunakan untuk menyimpan parity dari hasil perhitungan tiap bit-bit yang ada di harddisk lainnya.
Contoh kasus:
Kita memiliki 4 harddisk (sebut saja harddisk A,B,C, dan D) dengan ukuran yang sama, masing-masing 40GB. Jika kita mengkonfigurasi keempat harddisk tersebut dengan RAID 3, maka kapasitas yang didapat adalah: 3 x 40GB = 120GB. Sedangkan harddisk D tidak digunakan untuk penyimpanan data, melainkan hanya untuk menyimpan informasi parity dari ketiga harddisk lainnya: A, B, dan C. Ketika terjadi kerusakan fisik pada salah satu harddisk utama (A, B, atau C), maka data tetap dapat dibaca dengan memperhitungkan parity yang ada di harddisk D. Namun, jika harddisk D yang mengalami kerusakan, maka data tetap dapat dibaca dari ketiga harddisk lainnya.
RAID 4
Sama dengan sistem RAID 3, namun menggunakan parity dari tiap block harddisk, bukan bit. Kebutuhan harddisk minimalnya juga sama, 3 (n+1 ; n >1).
RAID 5
RAID 5 pada dasarnya sama dengan RAID 4, namun dengan pariti yang terdistribusi. Yakni, tidak menggunakan harddisk khusus untuk menyimpan paritinya, namun paritinya tersebut disebar ke seluruh harddisk. Kebutuhan harddisk minimalnya juga sama, 3 (n+1 ; n >1).
Hal ini dilakukan untuk mempercepat akses dan menghindari bottleneck yang terjadi karena akses harddisk tidak terfokus kepada kumpulan harddisk yang berisi data saja.
RAID 6
Secara umum adalah peningkatan dari RAID 5, yakni dengan penambahan parity menjadi 2 (p+q). Sehingga jumlah harddisk minimalnya adalah 4 (n+2 ; n > 1). Dengan adanya penambahan pariti sekunder ini, maka kerusakan dua buah harddisk pada saat yang bersamaan masih dapat ditoleransi. Misalnya jika sebuah harddisk mengalami kerusakan, saat proses pertukaran harddisk tersebut terjadi kerusakan lagi di salah satu harddisk yang lain, maka hal ini masih dapat ditoleransi dan tidak mengakibatkan kerusakan data di harddisk bersistem RAID 6.

Sumber: http://datasharing.wordpress.com/2011/03/01/pengertian-raid/

Senin, 25 Maret 2013

Memory Internal


Memory Internal
Pengertian Memory Internal 
Memory Internal adalah Memory yang dapat diakses secara langsung oleh prosesor. Memori internal memiliki fungsi sebagai pengingat. Dalam hal ini yang disimpan di dalam memori utama dapat berupa data atau program. Secara lebih rinci, fungsi dari memori utama adalah : Menyimpan data yang berasal dari peranti masukan sampai data dikirim ke ALU (Arithmetic and Logic Unit) untuk diproses Menyimpan daya hasil pemrosesan ALU sebelum dikirimkan ke peranti keluaran Menampung program/instruksi yang berasal dari peranti masukan atau dari peranti pengingat sekunder.
Jenis - Jenis Memory Internal
ROM (Read Only Memory) : Merupakan perangkat keras pada komputer berupa chip memori semikonduktor yang isinya hanya dapat dibaca. Jenis memori ini datanya hanya bisa dibaca dan tidak bisa ditulis secara berulang-ulang. Memori ini berjenis non-volatile, artinya data yang disimpan tidak mudah menguap (hilang) walaupun catu dayanya dimatikan. Karena itu memori ini biasa digunakan untuk menyimpan program utama dari suatu sistem. ROM pada komputer disediakan oleh vendor komputer dan berisi program atau data.Di dalam PC, ROM biasa disebut BIOS (Basic Input/Output System) atau ROM-BIOS. Instruksi dalam BIOS inilah yang akan dijalankan oleh mikroprosesor ketika komputer mulai dihidupkan.

Sampai sekarang dikenal beberapa jenis ROM yang pernah beredar dan terpasang pada komputer, antara lain PROM :

  • PROM (Progammable Read-Only-Memory) : Jika isi ROM ditentukan oleh vendor, PROM dijual dalam keadaan kosong dan kemudian dapat diisi dengan program oleh pemakai. Setelah diisi dengan program, isi PROM tak bisa dihapus.
  • EPROM (Erasable Programmable Read-Only-Memory) : Berbeda dengan PROM, isi EPROM dapat dihapus setelah diprogram. Penghapusan dilakukan dengan menggunakan sinar ultraviolet.
  • EEPROM (Electrically Erasable Programmable Read-Only0Memory) : EEPROM dapat menyimpan data secara permanen, tetapi isinya masih bisa dihapus secara elektris melalui program. Salah satu jenis EEPROM adalah Flash Memory. Flash Memory biasa digunakan pada kamera digital, konsol video game, dan cip BIOS.
RAM (Random Access Memory) : Merupakan jenis memori yang isinya dapat diganti-ganti selama komputer dihidupkan dan sebagai suatu penyimpanan data yang dapat dibaca atau ditulis dan dapat dilakukan secara berulang-ulang dengan data yang berbeda-beda. Jenis memori ini merupakan jenis volatile (mudah menguap), yaitu data yang tersimpan akan hilang jika catu dayanya dimatikan. Karena alasan tersebut, maka program utama tidak pernah disimpan di RAM. Random artinya data yang disimpan pada RAM dapat diakses secara acak. Modul memori RAM yang umum diperdagangkan berkapasitas 128 MB, 256 MB, 512 MB, 1 GB, 2 GB, dan 4 GB.

RAM dibagi lagi menjadi dua jenis, yaitu jenis Statik dan Dinamik. RAM statik menyimpan satu bit informasi dalam sebuah flip-flop. RAM statik biasanya digunakan untuk aplikasi-aplikasi yang tidak memerlukan kapasitas memori RAM yang besar. RAM dinamik menyimpan satu bit informasi data sebagai muatan. RAM dinamik menggunakan kapasitansi gerbang substrat sebuah transistor MOS sebagai sel memori elementer. Untuk menjaga agar data yang tersimpan RAM dinamik tetap utuh, data tersebut harus disegarkan kembali dengan cara membaca dan menulis ulang data tersebut ke memori. RAM dinamik ini digunakan untuk aplikasi yang memerlukan RAM dengan kapasitas besar, misalnya dalam sebuah komputer pribadi (PC).



                       Gb 1: EPROM
Jenis - Jenis RAM

  • DRAM (Dynamic Random Access Memory) adalah jenis RAM yang menyimpan setiap bit data yang terpisah dalam kapasitor dalam satu sirkuit terpadu. Data yang terkandung di dalamnya harus disegarkan secara berkala oleh CPU agar tidak hilang. Hal ini membuatnya sangat dinamis dibandingkan dengan memori lainnya. Dalam strukturnya, DRAM hanya memerlukan satu transistor dan kapasitor per bit, sehingga memiliki kepadatan sangat tinggi.
  • SRAM (Static Random Access Memory) adalah jenis RAM (sejenis memori semikonduktor) yang tidak menggunakan kapasitor. Hal ini mengakibatkan SRAM tidak perlu lagi disegarkan secara berkala seperti halnya dengan DRAM. Ini juga sekaligus membuatnya memiliki kecepatan lebih tinggi dari DRAM. Berdasarkan fungsinya terbagi menjadi Asynchronous dan Synchronous.
  • EDORAM (Extended Data Out Random Accses Memory) adalah jenis RAM yang dapat menyimpan dan mengambil isi memori secara bersamaan, sehingga kecepatan baca tulisnya pun menjadi lebih cepat. Umumnya digunakan pada PC terdahulu sebagai pengganti Fast Page Memory (FPM) RAM. Seperti FPM DRAM, EDO RAM memiliki kecepatan maksimal 50MHz EDO RAM uga harus membutuhkan L2 Cache untuk membuat semuanya berjalan dengan cepat, namun jika user tidak memilikinya, maka EDO RAM akan berjalan jauh lebih lambat.
  • FPM RAM (Fast Page Mode DRAM) adalah model DRAM paling lama. Masalah yang sering muncul dari FPM DRAM adalah kecepatan transfernya yang lambat yakni maksimum 50MHz.
  • SDRAM (Synchronous Dynamic Random Acces Memory). SDRAM bukanlah sebuah ekstensi dari seri EDO RAM yang lama, namun merupakan tipe baru dari DRAM. SDRAM mulai berjalan dengan kecepatan transfer 66MHz, sementara mode halaman DRAM dan EDO yang lebih lama akan berjalan di maksimal 50MHz. SDRAM sekarang ini dapat berjalan dengan kecepatan 133MHz (PC133), dan bakan hingga 180MHz atau lebih tinggi. Untuk mempercepat kinerja processor, maka RAM generasi baru seperti DDR dan RDRAM biasanya dapat mendukung performa yang lebih baik.
  • DDR (Double Data Rate SDRAM). DDR pada dasarnya memiliki kecepatan transfer dua kali lipat daripada SDRAM. DDR akan beroperasi di 333MHz, dengan pengoperasian sebenarnya 166MHz * 2 (aka PC333 / PC2700) atau 133MHz*2 (PC266 / PC2100). DDR RAM juga kompatibel dengan SDRAM secara fisik, namun menggunakan bus parallel yang sama, sehingga membuat implemnetasi lebih mudah dibandingkan RDRAM, yang merupakan teknologi berbeda.
  • RDRAM (Rambus Dynamic Random Acces Memory) adalah salah satu tipe dari RAM dinamis sinkron yang diproduksi oleh Rambus Corporation menggunakan Bus Speed sebesar 800 MHz tetapi memiliki jalur data yang sempit (8 bit). RDRAM memiliki memory controller yang canggih sehingga tidak semua motherboard bisa mendukungnya. Contoh produk yang memakainya adalah 3dfx seri Voodoo4. RDRAM merupakan teknologi memory serial yang datang dengan tiga pilihan, yakni PC600, PC700, dan PC800. PC800 RDRAM didesain dengan double maximum kecepatan transfer daripada PC100 SDRAM, namun memiliki latensi tinggi. RDRAM memiliki multi channel, seperti pada motherboard Pentium 4, yang dapat menawarkan fungsi memori paling bagus, terutama ketika dipasangkan dengan memory PC1066 RDRAM.




Gb.2 DDR 2 dan 3 RAM


Sumber: http://www.kiosbisnis.com/2012/04/cache-memory-memory-internal-dan-memory.html





Senin, 04 Maret 2013

Sistem Bus pada Motherboard

Ada beberapa macam sistem bus. Untuk mengkomunikasikan motherboard dan CPU Core 2 duo yaitu menggunakan FSB (Front Side Bus). FSB adalah jalur (bus) yang secara fisik menghubungkan prosesor dengan chipset northbridge pada motherboard. Jalur ini merupakan jalur dua arah, artinya aliran data/informasi bisa berjalan dari prosesor menuju motherboard atau sebaliknya. FSB juga menghubungkan processor dengan memori utama. Front Side Bus 1066, 1333 dan 1600 MHz yang dikenal pada prosessor Core2 Duo/Core2 Quad.
Kecepatan FSB yang dulunya maksimal 1.6 GT/s berlipat menjadi 6.4 GT/s. Hal ini dikarenakan kecepatan memory controller internal pada CPU lebih efektif dibandingkan memory controller pada Northbridge. Bandwidth maksimum FSB ditentukan lebar FSB (wide FSB), frekuensi FSB, dan jumlah transfer per detik (transfer/tick). Misalkan lebar FSB 32 bit (setara 4 byte) dengan frekuensi 200 MHz dan 4 transfer per detik. Bandwith maksimumnya adalah: Lebar FSB x frekuensi FSB x jumlah transfer per detik = 4 x 200 x 4 = 3200 Mega Byte perdetik Maknanya adalah jumlah data maksimum yang bisa dialirkan oleh FSB adalah 3200 MB per detik.
Makin besar bandwidth FSB makin cepat komputer bekerja. Namun, hal ini juga bergantung pada kemampuan komponen-komponen lain dalam mendukung kerja komputer (prosesor), misalnya cache memory, memori utama, teknologi-teknologi lain yang terkandung dalam prosesor itu sendiri. Kemampuan transfer per detik yang dimiliki FSB tergantung teknologi yang digunakan pada prosesor tersebut. FSB merupakan ‘tulang punggung’ hubungan antara prosesor dengan chipset pada motherboard, karena melalui FSB inilah keduanya saling mengirim dan menerima data/informasi. Melalui system bus chipset berhubungan ke komponen lain yang terhubung pada motherboard. FSB digunakan untuk mengomunikasikan antara motherboard dengan komponen lainnya. Berikut ini merupakan gambar arsitektur Front side bus.

FSB ( Front Side Bus )
FSB disebut juga dengan system bus. System bus adalah jalur (bus) yang menghubungkan mikroprosesor dengan chipset northbridge pada motherboard. Jalur ini sebagai tempat lintasan data/informasi yang diwujudkan dalam bentuk sinyal-sinyal elektronis. Jalur ini merupakan jalur dua arah. Artinya aliran data/informasi bisa berjalan dari mikroprosesor menuju motherboard atau sebaliknya. FSB juga menghubungkan mikroprosesor dengan memori utama (RAM). FSB biasanya terdiri dari bus data (data bus), bus control (control bus) dan bus alamat (address bus).

Ilustrasi  bus pada mikroprosesor
Bandwidth maksimum FSB ditentukan dari lebar FSB (width FSB), frekuensi FSB, dan jumlah transfer per detik (transfer/tick). Misalkan lebar FSB 32-bit (setara 4 byte) dengan frekuensi 200 MHz dan 4 transfer per detik. Bandwidth maksimumnya adalah :
Lebar FSB x frekuensi x jumlah transfer per detik
= 4 x 200 x 4
= 3200 Mega Byte per detik
Maknanya adalah jumlah data maksimum yang bisa dialirkan oleh FSB adalah 3200 MB per detik. Makin besar bandwidth FSB, makin cepat komputer bekerja. Namun, hal ini juga bergantung pada kemampuan komponen-komponen lain dalam mendukung kinerja komputer (mikroprosesor), misalnya cache memory, memori utama, dan teknologi-teknologi lain yang terkandung dalam mikroprosesor itu sendiri.
FSB merupakan ‘tulang punggung’ hubungan antara prosesor dengan chipset pada motherboard. Karena melalui FSB inilah keduanya saling mengirim dan menerima data/informasi. Melalui system bus, chipset berhubungan ke komponen lain yang terhubung pada motherboard. FSB digunakan untuk menghubungkan antara motherboard dengan komponen lainnya.
Patut dicatat bahwa semua system bus (PCI, AGP, memory) pada motherboard terhubung ke chipset, sehingga dapat dikatakan bahwa chipset menjadi titik utama koneksi system bus pada motherboard. Dengan demikian, tidaklah salah bila disebutkan bahwa FSB menghubungkan prosesor dengan komponen (device) lain dalam satu system computer melalui chipset yang ada pada motherboard.



  1. Bus Prosessor.
Disebut juga dengan front-side bus (FSB), merupakan bus tercepat pada komputer dan merupakan inti dari chipset (dan motherboard). Utamanya, bus ini di gunakan oleh mikroprosesor untuk melewatkan informasi ke / dari chache atau memori utama, dan juga ke chipset north-bridge. Bus prosessor pada komputer sekarang berjalan pada kecepatan 66MHz, 100MHz, 133MHz,atau 200Mhz menggunakan lebar jalur data 64 bit (8 byte).
  1. VESA(Video electronics Standards Association), dikenal sebagai VESA local bus atau VL bus. VL Bus versi 1.0 ialah bus 32 bit yang dapat bekerja hingga 33MHz.
VGA
VGA, singkatan dari Video Graphics Adapter, adalah standar tampilan komputer analog yang dipasarkan pertama kali oleh IBM pada tahun 1987. Walaupun standar VGA sudah tidak lagi digunakan karena sudah diganti oleh standar yang lebih baru, VGA masih diimplementasikan pada Pocket PC. VGA merupakan standar grafis terakhir yang diikuti oleh mayoritas pabrik pembuat kartu grafis komputer. Tampilan Windows sampai sekarang masih menggunakan modus VGA karena didukung oleh banyak produsen monitor dan kartu grafis.
Istilah VGA juga sering digunakan untuk mengacu kepada resolusi layar berukuran 640×480, apa pun pembuat perangkat keras kartu grafisnya. Kartu VGA berguna untuk menerjemahkan keluaran komputer ke monitor. Untuk proses desain grafis atau bermain permainan video, diperlukan kartu grafis yang berdaya tinggi. Produsen kartu grafis yang terkenal antara lain ATI dan nVidia.
Selain itu, VGA juga dapat mengacu kepada konektor VGA 15-pin yang masih digunakan secara luas untuk mengantarkan sinyal video analog ke monitor. Standar VGA secara resmi digantikan oleh standar XGA dari IBM, tetapi nyatanya VGA justru digantikan oleh Super VGA.
  1. PCl Express
PCI Express (PCI-E/PCIex) adalah slot ekspansi module, di desain untuk menggantikan PCI bus yang lama. Banyak Motherboard mengadopsi PCI express dikarenakan PCI Express memiliki transfer data yang lebih cepat, terutama untuk keperluan grafis 3D. Slot ini memiliki kecepatan 1x, 2x, 4x, 8x, 16x and 32x, tidak seperti PCI biasa dengan sistim komunikasi paralel. PCI Express menggunakan sistem serial dan mampu berkomunikasi 2 kali (tulis/baca) dalam satu rute clock.
Ini adalah kecepatan lebar data maximun dari PCI:
  • Kecepatan Max
  • PCI-ex 1x 250 MB/s
  • PCI-ex 2x 500 MB/s
  • PCI-ex 4x 1000 MB/s
  • PCI-ex 8x 2000 MB/s
  • PCI-ex 16x 4000 MB/s
  • PCI-ex 32x 8000 MB/s

Sejarah Pengembangan
Dalam perjalanan pengembangannya PCI Express (PCIe) sebelumnya dinamai HSI (High Speed InterConnect) dan mengalami pergantian nama menjadi 3GIO (3rd Generation I/O). Akhirnya PCI SIG (PCI Special Interest Group) menamainya menjadi PCI Express.  PCIe masih dalam pengembangan yang berkelanjutan. versi sekarang yang banyak beredar adalah PCIe 1.0, PCI-SIG sudah mengumumkan beredarnya PCIe 2.0 (Januari 2007) dan PCIe 3.0 (Agustus 2007)

  1. AGP
Bus AGP, singkatan dari Accelerated Graphics Port adalah sebuah bus yang dikhususkan sebagai bus pendukung kartu grafis berkinerja tinggi, menggantikan bus ISA, bus VESA atau bus PCI yang sebelumnya digunakan.
Spesifikasi AGP pertama kali (1.0) dibuat oleh Intel dalam seri chipset Intel 440 pada Juli tahun 1996. Sebenarnya AGP dibuat berdasarkan bus PCI, tapi memiliki beberapa kemampuan yang lebih baik. Selain itu, secara fisik, logis dan secara elektronik, AGP bersifat independen dari PCI. Tidak seperti bus PCI yang dalam sebuah sistem bisa terdapat beberapa slot, dalam sebuah sistem, hanya boleh terdapat satu buah slot AGP saja.
Spesifikasi AGP 1.0 bekerja dengan kecepatan 66 MHz (AGP 1x) atau 133 MHz (AGP 2x), 32-bit, dan menggunakan pensinyalan 3.3 Volt. AGP versi 2.0 dirilis pada Mei 1998 menambahkan kecepatan hingga 266 MHz (AGP 4x), serta tegangan yang lebih rendah, 1.5 Volt. Versi terakhir dari AGP adalah AGP 3.0 yang umumnya disebut sebagai AGP 8x yang dirilis pada November 2000. Spesifikasi ini mendefinisikan kecepatan hingga 533 MHz sehingga mengizinkan throughput teoritis hingga 2133 Megabyte/detik (dua kali lebih tinggi dibandingkan dengan AGP 4x). Meskipun demikian, pada kenyataannya kinerja yang ditunjukkan oleh AGP 8x tidak benar-benar dua kali lebih tinggi dibandingkan AGP 4x, karena beberapa alasan teknis.
Spesifikasi AGP Diperkenalkan Kecepatan Tegangan Maksimum troughput
66 MHz (1 x 66 MHz), 32-bit
3.3 Volt 266 MByte/detik
133 MHz (2 x 66 MHz), 32-bit
3.3 Volt 533 MByte/detik
266 MHz (4 x 66 MHz), 32-bit
1.5 Volt 1066 MByte/detik
533 MHz (8 x 66 MHz), 32-bit
1.5 Volt 2133 MByte/detik
Selain empat spesifikasi AGP di atas, ada lagi spesifikasi AGP yang dinamakan dengan AGP Pro. Versi 1.0 dari AGP Pro diperkenalkan pada bulan Agustus 1998 lalu direvisi dengan versi 1.1a pada bulan April 1999. AGP Pro memiliki slot yang lebih panjang dibandingkan dengan slot AGP biasa, dengan tambahan pada daya yang dapat didukungnya, yakni hingga 110 Watt, lebih besar 25 Watt dari AGP biasa yang hanya 85 Watt. Jika dilihat dari daya yang dapat disuplainya, terlihat dengan jelas bahwa AGP Pro dapat digunakan untuk mendukung kartu grafis berkinerja tinggi yang ditujukan untuk workstation graphics, semacam ATi FireGL atau NVIDIA Quadro. Meskipun demikian, AGP Pro tidaklah kompatibel dengan AGP biasa: kartu grafis AGP 4x biasa memang dapat dimasukkan ke dalam slot AGP Pro, tapi tidak sebaliknya. Selain itu, karena slot AGP Pro lebih panjang, kartu grafis AGP 1x atau AGP 2x dapat tidak benar-benar masuk ke dalam slot sehingga dapat merusaknya. Untuk menghindari kerusakan akibat hal ini, banyak vendor motherboard menambahkan retensi pada bagian akhir slot tersebut: Jika hendak menggunakan kartu grafis AGP Pro lepas retensi tersebut.
Selain faktor kinerja video yang lebih baik, alasan mengapa Intel mendesain AGP adalah untuk mengizinkan kartu grafis dapat mengakses memori fisik secara langsung, yang dapat meningkatkan kinerja secara signifikan, dengan biaya integrasi yang relatif lebih rendah. AGP mengizinkan penggunaan kartu grafis yang langsung mengakses RAM sistem, sehingga kartu grafis on-board dapat langsung menggunakan memori fisik, tanpa harus menambah chip memori lagi, meski harus dibarengi dengan berkurangnya memori untuk sistem operasi.
Mulai tahun 2006, AGP telah mulai digeser oleh kartu grafis berbasis PCI Express x16, yang dapat mentransfer data hingga 4000 Mbyte/detik, yang hampir dua kali lebih cepat dibandingkan dengan AGP 8x, dengan kebutuhan daya yang lebih sedikit (voltase hanya 800 mV saja.)

  1. ISA (Industrial Standard Architecture)
Bus ISA dikembangkan oleh IBM di Boca Raton, Florida. Ketika IBM memperkenalkan IBM PC tahun 1981, digunakanlah bus ISA 8 bit, namun pada bulan Agustus 1984 IBM memperkenalkan IBM PC-AT (Advance Technology) yang menggunakan bus ISA 16 bit.Slot ISA terdiri dari 16 bit, meskipun tersedia yang 8 bit yang merupakan subset dari ISA 16 bit. Oleh karena itu kartu ISA 8 bit dapat dipasang pada slot ISA 16 bit namun tidak sebaliknya.
Slot ISA ini paling tepat dijadikan praktikum interfacing komputer karena kemampuan chip yang kita gunakan umumnya sesuai dengan kecepatan dan lebar data bus ISA. Pada ISA 8 bit hanya terdapat sebuah pengontrol  DMA (DMA Controller). Bus ISA 16 bit mempunyai 2 buah pengontrol DMA yaitu master dan slave. Pengontrol DMA dapat diprogram untuk transfer baca (data dibaca dari memori ke piranti I/O), transfer tulis (data dibaca dari piranti I/O ke memori) dan transfer verify yang digunakan oleh DMA kanal 0 untuk merefresh RAM/memori di komputer.
Ketika IBM PC XT diperkenalkan, ia hanya memiliki sebuah kontroler interupsi yaitu dari IC 8259 yang hanya bisa mengalamati 8 interupsi. Baru pada computer IBM PC AT dan seterusnya mempunyai pengontrol kedua dalam kombinasi master /slave. Sinyal interupsi bisa berupa edge triggered atau level triggered. Umumnya secara default ialah edge triggered dan aktif tinggi. Berikut Tabel perbandingan Bandwith ISA, EISA, dan Micro Channel Bus .
Semakin canggih komputer, yang membutuhkan kecdepatan bus yang berbeda (missal port ISa dengan VGA Card), para desainer motherboard mendesain ulang bus yang disebut sebagai local bus. Ide dari local bus ialah mengakses sistem bus pada kecepatan yang sama dengan mikroprosesor atau mendekatinya.  Pada mikroprosesor berkecepatan 33MHz yang memiliki bus local dan ISA, kecepatan bus ISA terbatas hanya 8 MHz, tetapi sinyal local bus diakses pada kecepatan yang sama dengan CPU, yaitu 33MHz.

Sumber: http://blog.ub.ac.id/fauziahmayasari/2012/07/14/sistem-bus-pada-motherboard/